随着电子产品的快速更新换代,全球电子废物产生量急剧上升,仅2019年就达到了5360万吨。电子废物中含有大量贵金属,如黄金(Au
氧化态),这些金属不仅具有高经济价值,还因为其回收过程复杂而具有重要的环保意义。电子废物的不当处理会导致环境污染,危害土壤、水资源和空气质量,并对人类健康造成潜在威胁,导致高昂的治理和医疗成本。
传统的金回收过程涉及废弃电子产品的破碎、形成可溶㊣性金盐、离子提取、沉淀和㊣还原等多个步骤,通常需要活性炭、碳纳米管、沸石等材料作为吸附剂。然而,这些方法不仅过程繁琐、成本高昂,还面临吸附容量低、反应速度慢、再生困难等瓶颈。
理想的回收工艺应具备高效、快速、成本低的特点,同时能减少能源和化学品的消耗,并且在机械性能上足够稳固,确保长久使用。推动这一技术的发展,不仅有助于资源回收利用,更能㊣有效减轻电子废物对㊣环境✅的影响,为经济和环保㊣带来双重效益。
在此,新加坡国立大学Daria V. Andreeva教授联合2010年诺奖获得者Kostya S. Novoselov教授提出了一种同时回收和还原来自电子垃圾中Au3+和Au+方法以产生固体 Au形式,从而跳过了几个技㊣术步骤。作者通过二维氧化石墨烯和一维壳聚糖大分子的自组装开发了一种纳米级跨维复合材料,能够同时作为金离子的清除剂和还原剂。这种多维结构不需要施加任何电压来吸附和还原 Au石墨烯,并且仅依赖于 Au 离子在异质 GO/CS 纳米限域中的化学吸附动力学及其在多个结合位点上的化学还原。离子吸收中的协同现象是导致㊣金提取效率极高的原因。Au㊣3+和 Au+的提取能力达到 16.8 g/✅g和 6.2 g/g,比任何现有金吸附剂所能提出的体积大 10 倍。效率高于 99.5 wt.%(电流限制为 ✅75 wt.%),提取能力低至 3 ppm 的极低浓度。相关成果以“Graphene/chitosan nanoreactors for ultrafast and precise recovery and catalytic conversion of gold from electronic waste”为题发表在PNAS上,第一作者为Kou Yang.
首先,将壳聚糖(CS)溶解在1%v/v乙酸(HOAc)中,并在室温下磁力搅拌48小时,形成稳定的CS/HOAc分散体。然后,在使用前将 2 mg mL−1GO 分散体超㊣声处理 30 分钟,形成分散的 GO 薄片。第二步是将CS分散体与GO分散体按一定质量比混合,形成复合纳米片。混合后,CS 分子在 GO 薄片表面自组装,形成可接近的离子结合位点(图 1A)。下一步是将 GO/CS 薄片排列成多层,让它们㊣在水中膨胀,然后通过冷冻干燥形成 GO/CS 海绵。GO/CS海绵(图1B和C)被设计为一种独特的复合吸附剂,可以化学吸附金离✅子,具有高电容和高萃取率。为了获得 GO/CS 海绵,作者对 GO/CS 悬浮液采用了冻干技术。海绵状形态具有 10 至 50 μm 互连空隙网络,可直接用作金吸收剂,增强质量流量。独特的特性使得海绵可以直接用作过滤器从溶液中提取金离子(图1D)。
作者研究了从电解沉积废液中回收不可再利用的 Au³⁺,通过 GO/CS 复合海绵优化吸附技术。使用浓度为 8,170 ppm 的 Au³⁺ 溶液筛选出最佳的 GO/CS 组合和 pH 值(图 2A-㊣C),发现 GO/CS10 海绵在室温下的吸附容量可达 16.8±2.3g/g。实验表明最佳吸附 pH 约为 4.6-6.5,接近 GO 和 CS 的✅ pKa 值范围(图 2B)。每轮吸附后,海绵经去离子水超声清洗,仍表现出良㊣好的重复使用性(图 2C)。热力学研究显示,Au³⁺ 吸附是自发放热过程(ΔG°ads = -1.87 kJ/mol),ΔS°ads 的正值表明固液界面随机性增加。GO/CS 复合材料的异质表面结构通过毛细管作用提升了吸附效率,与单独使用的 GO 或 CS 相比,表现出更高的稳定性和吸附效果。
过SEM/EDX分析GO/CS海绵在化学吸附金离子后的表面形态(图3A和B),显示除了化学吸附的金离子,还均匀分布着固态金簇和金纳米颗粒(AuNP)。XPS分析(图3C和D)揭示GO和CS的官能团对Au+和Au3+的吸附及还原的作用,其中84和88 eV处的峰证实了Au+和Au3+还原为金属Au。Au+的光谱在90 eV处出现的峰表明Au+和CS之间形成了复合物,这归因于Au+-CS相互作用的结合能。DF㊣T计算进一步表明,GO的石㊣墨烯平面与金离子㊣之间存在排斥力,而CS链的O和N原子则通过库仑力吸附金离子,且吸附强度取决于离子电荷状态(图3C)。与传统吸附剂相比,本材料对Au+和Au3+的吸附性能显著提升(图3D),在10分钟内可同时萃取16.7 g/g的Au3+和6.2 g/g的Au+,远超现有材㊣料。
在含多种离子和痕量金的真实多组分体系中,作者利用电解沉积废液展示了GO/CS海绵的提取效率(图4A)(废液由SG Recycle Group SG3R, Pte, Ltd提供)。该废液成分㊣如图4B所示,含镍(㊣N✅i,52.3 ppm)、铁(Fe,31.1 ppm)和少量残余金(3.1 ppm)。废液的pH为8.8,而提取效率受pH值影响显著,在pH 3条件下效果最佳(图4C和D)。在此条件下,GO/CS海绵能高效、选择性地提取金,实现了铁掩蔽处理后对金的完全选择性萃取锂离子电池。
总之,本文利用纳✅米级跨维复合材料实现高效的金离子化学吸附和纳米✅级催化还原反应。通过结合二维氧化石墨烯和一维壳聚糖,自组装的复合材料展现了优异的离子传输和催化性能,显著超过单一组分的效果。该材料对Au+和Au3+表现出超强亲和力,可在10分钟内分别吸附16.8 g/g Au3+和6.2 g/g Au+,其提取效率达99.5%,可有效用于电子废物回收及工业电解废液处理,且对银、铜、钴和镍等金属同样高效。
狐大家平台的作家撰写注脚:本文由入驻搜,方账号表除搜狐官,表作家自己意见仅代,搜狐态度✿不代表。 天能齐头
石墨是碳元素的一种同素异形体,也是一类重要的无机非金属材料,为黑灰色、有金属光泽、质软、有滑腻感,可分为天然石墨和人
记者3日从黑龙江省鹤岗市召开的天然石墨高质化利用成果发布会上了解到,中国五矿集团有限公司王炯辉科研团队攻克石㊣墨高温
提问:有公开信息显示公司在布局废电池回收石墨的业务,这是目前废电池负极材料回收的一项新技术,目前✅公开的技术有物理法,
2019年1月22日,广东某工业园内,两名员工把生产车间内的珍珠棉成㊣品搬到货车车厢里。一员工从珍珠棉上跳下来,踩到车
5.1.1 Nippon Kokuen Group基本信息、石墨粉生产基地、销售区域、竞争对手及市场地位 ㊣㊣5.3
绵阳拥有中国工程物理研究院、中国空气动力研究与发展中心等国家级✅科研院所18家,国家级创新平台25家,全社会㊣✅研发经
据统计涌现据海合数,片石墨进口总量为0。09万吨2020年10月华夏季然鳞,5。31%同比裁汰9,53。21环比淘凯发
的营销战栗以上鸿博,宜吸引流量一方面以便,钓饵饱感人们踊跃分享竣工裂变另一方面经由扣头或者免费额,新引力的一个钓饵个
之总,暖气片行业的改造之举石墨烯暖气片行动中国,场供认和用户青睐正在逐步获得商。牌为全班人们提供了一个参考央视评选的中原